
CY)Y

The Programmer's Guide to Moviola:
An Interactive Execution History Browser

Robert Fowler and Ivan Bella

Technical Report 269
February 1989

DTI
.... MAI EL ECi F_

S OCT3 192 DB

UNIVERSITY OF

ROCHESTER
COMPUTER SCIENCE

Appvo., T 'f, r q frwt A



The Progriammer's Guide to Moviola:
An Interactive Execution History Browser

Robert Fowler
Ivan Bella

The University of Rochester
Computer Science Department

Rochester. New York 14627

Technical Report 269

February 19S9

Abstract

Moriola is an interactive browser used to create, examine, and manipulate graphical representations

of synchronization histories of concurrent programs. It is part of an integrated, programmable toolkit

for debugging and performance tuning parallel programs. This guide presents Aoviola by describing

its use as a standalone program and as a component of the toolkit. In addition, we describe the

interface seen by a programmer of the toolkit.

This work is supported in part by U. S. Army Engineering Topographic Laboratories research contract DACA
76-85-C-0001, in part by ONR research co. v,- Nuo01. 51-K-(650 and N00014-87-K-0548, and in part by NSI:
research grant CCR-8704492.



51LCUR TY CLASSIFICATION OF HS.-

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. REPORT NUMBER 2 GOVT ACCESSION NO. 3 RECIPIENT'S CATALOG NUMBER269

4. TITLE (end Subtitle) 5 TYPE OF REPORT & PERIOD COVEREDTechnical Report
The Programmer's Guide to Moviola:

6 PERFORMING ORG. REPORT NUMBER

An Interactive Execution History Browser
7 AUTNORes, a CONTRACT OR GRANT NUMBER-.

DACA76-85- C-O001
Robert Fowler and Ivan Bella NOO0 14-87-K-0543

NOO0 14-84-K-0655
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT. TASK

Computer Science Department AREA 6 WORK UNIT NUMBERS

734 Computer Studies Bldg
University of Rochester, Rochester, NY 14627

I1. CONTROLLING OFFICE NAME AND ADDRESS 12. REFOgT DATE
D. Adv. Res. Proj. Agency rebruary 1989
1400 Wilson Blvd. 13. NU EROF PAGES

Arlington VA 22209 UO
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS. (of this raporj

Office of Naval Res. US Army ETL Unclassified
Information Systems Fort Belvoir
Arlington, VA 22217 VA 22060 IsM. DECLASSIFICATION DOWNGRADIN3

SCHEDULE

16. DISTRIBUTION STATEMENT (of thl Reportj

Distribution of this document is unlimited.

17. DISTRIBUT!ON STATEMENT (of the *betract entered in Block 20, if different from Report)

IS. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reverse side It necessary and iden-ify by block number)

visualization, performance analysis, multiprocessor, debugging,
program replay, parallel programming environments

20. ABSTRACT (Continue an reverse side It necesary aid Identify by block number)

Moviola is an interactive browser used to create, examine, and manipulate
graphical representations of synchronization histories of concurrent programs.
It is part of an integrated, programmable toolkit for debugging and perfor-
mance tuning parallel programs. This guide presents Moviola by describing
its use as astandalone program and as a comoonent of the toolkit. In
addition, we describe the interface seen by a programmer of the toolkit.

DD FORM 1473 EDITION OF I NOV 6S IS OBSOLETE Unclassified
SECURITY CLASSIFICATION OF THIS PAGE ("When Det Entered



1 Introduction

MAouola is an interactive browser used to create, examine, and manipulate graphical repr,'se,oa-

tions of synchronization histories of concurrent programs. It is part of an integrated. programrmal.le

kit of tools under development by the "Parallel Program Understanding Techniques and Tools"

(PPUTTS) group in the University of Rochester Computer Science Department [Fowler et al.. 19 !,'

The Pt' 1"TS Toolkit is a collection ot programs designed to help programmers understand in detail

the behavior of parallel programs that use explicit and potentially fine-grained synchronization ant'

locking operations to control access to shared resources. The goal is to facilitate the logical deibu¢-

ging, the performance debugging. and the performance analysis of these programs in much the sam,.

way interactive debuggers and profilers are used to analyze the behavior of sequential pr,,ranis

The Toolkit is based on an extension of the Instant Replay [LeBlanc and Mellor-('rumniey. l1,7"

technique for recording synchronization h.istories of parallel programs. Data recordt-d in th, hisitcri,-

allow the deterministic replay of the program execution under a debugger as well as detailed perf, r-

mance analysis for debugging and tuning. Moriola is the common user interface for the ana!ysis and

graphical manipulation of those histories. These core facilities form a foundation upon which A-,- ar,

constructing more complex tools such as symbolic debuggers. execution profilers. and -erforriiac,-

analyzers.

The synchronization history of an execution of a parallel program is a partial ordering of th,-

events in that execution. Morzola represents it as a airected acyclic graph. The vertices of the grapl,

are ercnits, each of which is the execution of an operation on a shared object through which processes

can synchronize and communicate. Instrumented synchronization primitives record the details of

each operation in the local synchronization histor, '.e invoking process. Molzola combines the

local histories to form the global history. Dependii,. he style of parallel programming used inl

the target program. events may consist of the sending and receiving of messages. the reading and

writing of shared variables protected with a locking protocol, the operations of other constructs for

concurrent programming. or a combination of several of these. Each directed edge in the graph

represents a temporal dependency between the pair of events it joins [Lamport. 1978]. A-- in Lam-

port's treatment of time in distributed systems, the events on each processor are totally ordered

with an edge from each event to the next succeeding event, on that processor. The event at which

a message is sent will be joined with the event at which it is received. An edge can also represent

a conflict ([Bernstein el al., 1987], Chapter 2) dependency between operations on a shared variable.

This can be a write-read dependency that arises between the writing of a value in a variable and a ?or

later operation that reads that value, a read-write conflict between a read and a subsequent write

operation that destroys the value read, or a conflict between a pair of write operations.

Moriola presents synchronization history graphs as time-space diagrams (See Figure 1). In the ..

diagram, time flows from top to bottom: all edges in the graph are implicitly directed from top to

bottom. Events that occur within a single process are aligned vertically, forming a time line for that ,nl

• a .tb Lity Co. des
,7 N i.'~1A t and/or

A1 2,Iq



7-.77

m p

il 2' &i'ivri art Cf ti 0S\rl 1r, Ill17;01 Ili (i-' 'r\ yr ur ,:

aj Ims '~~ u r equatlris HIMg [araflel Gasia intn' 1n h1s ch i

1),-l;vr a- a dirrt'd acyclic graph in thei central pan#- MI-iiij 1, r

r,,hf'l gra1 Ii pane, Or; tic bhattm is a message (text) part,: A lrzrii
r i II I, . iletA Nx OP VSsaE! and gray h panes. On th- right is a \vertical fevm

T ArI' - I -ea I -r 1,a r, a r, a r r-A ad1s for SCro TOIIIn v - T h sm A 11 pan - iii te l-r r1 i ,
it' irt ti dta'na ;ra~h t'i ThIe ha- onl the loft di-pla- th- T1111 -. an-! 11,-



process. Diagonal edges represent inter-process dependencies. Each event is presrnted as a shad.-d

box whose height is proportional to it- duration. The box is divided into a waiting time conipcneit

and an execltion time component. Depending on the synchronization and communication primitivl:

used. a processor may have to wait for a message to arrive, for a buffer to be filled or emptied. or fr

a lock on a shared variable to become available. Excessive waiting is an indication of performance

problems. The graphical presentation of waiting in the Moriola display helps to draw the use.r's

attention to these problems.

Although the execution of each pair of conflicting operations adds an ordering constraint I):-

tween them, programmers are often concerned only with the subset of edges that entail the flow of

informz' ion between processes. Moviola therefore uses the full set of edgres to derive a consist,'t,

glrbal clock used to determine the placement of events along the time axis. but the programril.r cal,

specify a different set to be "interesting" enough to be displayed.

Mouzola can either be run as a standalone program or as part Df the PPUTTs Toolkit. Ihe

Toolkit (See Figure 2.) consists of a collection of programs (tools) that run under the aegis of an..d

interact through a Common Lisp system (Kyoto Common Lisp [Yuasa and Itagival). I s( r it,'-rar-

tion is through version 11 of X Windows [Gettys and Scheifler, 1966]. Tools can be written ii otlhr

languages as well as in Lisp. The Lisp interface to Moviola includes a package through which Lisp,

code can access and manipulate 3lotiola'sinternal data structures. This package includes functici:'.

for the management of multiple execution histories in multiple windows and facilities for extendincr

Moviola'suser interface. The Lisp interface is the foundation upon which we are constructing the

interfaces between Moviola and other components of the Toolkit. Performance analysis and debug-

ging tools are able to install themselves to use Moviola both as a common execution graph managor

as well as to provide a common user interface.

2 Using Moviola in Standalone Mode

'Io run Motloia in standalone mode on a Sun 3 execute:

moviola [ history-directory ] [-d defaults-file] [-D display.name]

The arguments to the command line are:

history directory is a path to the directory containing the synchronization history of interest. The
history is stored as a set of individual process history files. The directory must contain a file
named "name" whose first line is a text string specifying the prefix of the data file names.
The second line of text is the name identifying which instrumentation package was used for
the current synchronization history. The format of a data file name is: prefir.poid where
prefix is the prefix mentioned above, and poid is a hexidecimal process identifier number.

-d: This option allows a .moviolarc initialization file to be specified explicitly.

3



Graphics Shared Files Target
Workstation Multiprocesso:

Message Dispatchier oinictn
Lisp X Windows Central

Interface

Tools: i ato.
ExeaiinW Shells Object Code Monitor Ao licai on
Debuggers
Performance MonhorsMoirI
Perlormnce Analyzers 10 ,,o-
Replay Data Recorders nltor Applicaion
Replay Data Analyzers Mod:G
Target Too Complier Replay D Processes p
... " more D Stub 3

Moviola Interface r, g -' Tool s

Moviola 'MoviolaPer Processor Modules
I Execution

Histories

Figure 2: The organization of the PPUT'Is loolkit.

-D: The default display used 1,y Xl is specified by the environment variable "DISPLAY".
,1orio2 will use this unless ot}. rwise specified by this option. The display name is of th,.
format: hostname:numbcr.scrcc-j2number. See the Xll documentation for a description of
the display variable.

XVhcni Motiola starts, it opens its main window, loads the execution history (if specified), and

displays the history in the graph pane (See Figure 1). The menu headers at the top of the mair

window are used to activate a set of pull-down menus. The darkened parts of elevator bars on the

right and across the bottom show the position of the viewport in the graph pane relative to the

whole history. Clicking the mouse in an elevator will move the viewport position. Clicking on an

arrowhead at the ends of an elevator bar will move the viewport a fixed distance in the indicated

direction. The ruler on the left displays the time scale in units of "ticks," the resolution of the

clock used to record event timestamps. Messages to the user are displayed in the text window at

the bottom. Text entered by the user is also echoed there. Clicking on the small pane containing a

butterfly icon below the ruler will "iconify'" the main window.

2.1 Interacting with Moviola

The graphical interface provided by Movtola is extremely flexible. In addition to generic panning
and zooming facilities, it provides facilities for interactively customizing the user's view of the graph

to focus on the interesting parts of th- history. The user has the ability to define subsets of processes

to display or highlight, control over the order of processes in the display, and the ability to highlight

4



or suppress events representing operations on specified subsets of shared resources. Thor, i- a-,

facility to define the sot of interesting evcnt depend,--ncies that should be displayed.

Commands and options can be invoked through pull-down menus, pop-up menus, or thr,,ugh

mouse events caused by pressing or clicking mouse buttons. optionally holding down one or more

keys on the keyboard.

To activate a pull-down menu, point to the menu header with the mouse and hold down a mouse

button. Pop-up menus are activated by mouse events while pointing to something inside the graph

pane. In both cases dragging the mouse downwards will highlight each menu item as thf point-r

passes through it. To. select a highlighted item release the mouse button. Unless otherwise stated.

selecting a menu item toggles the corresponding option.

2.1.1 Moving around the synchronization graph

.1;,',icla provides many ways to select the portion of the synchronization history graph to di-lplKx rl

tl, -.iewport of the graph pane. Most of them are bound to mous( events. The actual buttoin!k,.

combinations are specified in an initialization file called ".movbindrc". For details see secticn 2.2 I

Arrowheads: Clicking the mouse when the cursor is in one of the arrowheads at the ent c.f t,
elevator bars will move the viewport in the indicated direction. Holding th buttorn doo
will repeat the motion.

Elevator Bars: The total iength of the vertical (horizontal) elevator bar represents the vertical
(respectively horizontal) extent of the history graph. The dark region in each har d-tiot-
that part of graph that is currently visible in the viewport. Clicking the cursor in eitlir of
the elevator bars will center the viewport on that relative position in the graph.

Zoom In" One can zoom in on a section of the history by designating a rectangular regi,n cf
the history to be expanded to fill the graph window. The x and y coordinates are scal-!
independently. The region is designated by selecting one of its corners with the mouse, and
while the appropriate key/button combination (by default, (no keys)/middle button) is held
down. drag the cursor to the diagonally opposite corner and release.

Zoom Out: The contents of the current graph pane are scaled down to fit into a roctancular
area. The area is designated as described above. 'Ihe default key/button combination is (no
keys)/right button.

Jump: By clicking the button/key combination (by default (no keys)/left button) in the graph
pane, the point where the mouse was will be moved into the center of the graph pane.

Scroll: Holding this button/key combination (by default shift/left button) down changes the
cursor to a hand that "grabs" the graph so that it can be moved around. Releasing the
cursor will leave the graph in the new position.

Undo: By clicking this button/key combination (by default control/middle button) in the graph
pane, you can undo the effects of the last operation in this section.

Ruler: Selecting a time interval by selecting and dragging with the left mouse button over a
portion of the ruler bar on the left side of the display opens a small window describing that
interval both in terms of "ticks" and milliseconds.

5



m EVENT DATA xx
POIL EVENT TIME SOID VRSN Wait-T Work-T INDEX STATUS OP

d 756 1418736 20001614 16 1575 0 10 D POLNULL

x OUT LINES xx
POIL EVENT TIME SOID VRSN Wait-T Work-T INDEX STATUS OP

d 757 1,420424 22001644 16 394 0 II D POLNULL
>>>>>>>>>>>>>>>>>>>> >>>>>>>>>>>>>>>>>>>>< <<<<<<<<<<<<<<<<<<<<<< <<<<<<<<<<<<<<<<

xx IN LINES xx
POID EVENT TIME SOID VRSN Wait-T Work-T INDEX STATUS OP

d 755 1418571 Ic00164 16 21 0 9 D POLNULL

POID EVENT TIME SOID VRSN Wait-T Work-T STATUS OP

b 756 1419275 2000164 15 9 0 D WRITSTART
> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><<<<<<<<<<<<<<<<<<<<<<< <<<<<<<<<<<<<<<<< <

xx PROCESS HEADER DATA xx

POD #EVENTS ENTRY EXIT LIFE STATUS OP
d 820 304465 1463209 1158744 D HEAD

Figure 3. An event data windo%

2.1.2 Examining events iii detail

T!,, di . .ornan I is used to open data windows in which the details of selected events are

, !, . , '- , xr - ') dptpilc -" ti'P bi6,torv as a whnle. By default the key/button
comhinat,,i i- dift/middie but ton Pressing and holdini, his coribinatirn in the graph pane or in

a dat-i window will poi. up a menu.

Iessitg at.d hobding orn a eent in the graph pane activates the Event Data menu pop-up menu.

Pr.ss~in and I,',ing un a lnc of text representing an event in a data window has a similar effect.

The first iton in this menu is "Event Data". Selecting this item will open a data window containing

details about the event. See Figure 3. The data given in this window is determined by the fir-t four

ltf.ns in '1!o "Dump Data" pull-down menu:

In Line'.: List events that directly affect this even't (witi, tlieir event data)

Out Lines: List events (with their event data) that this event directly affects.

Proc Data: Display raw data from the header of the process containing this event.

Event Data: Display details about this event.

Pressing and holding in the graph window, but not on an event, opens a History Data menu.

The first item in this menu will always be "History Data". Selecting this item will display the data

aboutt ft, history in the message window at th- bottom of the Mo viola window.

In addition to the Event Data and History Data items, the installation of other tools in the

"Foolk}it can extend the Moticla user interface by adding additional items to these menus.



2.1.3 Controlling tho Display

Four of the pull-down menus coII aiII coMMands an I opt ions that control t , a t r of i

graph in the display.

Label Menu: This nienu controls the labelling ofevents in the display The options ar, iual '.

exclusive.

Op ID: Display th- identifior for the type of event.

Obj ID: Display the ID of the object referenced by the event

Proc ID: Display the ID of the process containing this event.

Event ID: Disjlay th, ID of the event within its process.

Display Menu: 1is menu controls the major display modes! logical vs p!.ssical 'ii:, I-
display dependencies from .movsyncrc or .m.oviolarc. and specify tht displaN ord,.r of tl,.
processors.

Logical: Toggle between physical and logical time bases. If the physical tini, ba., i
chosen. t-e time axis is a ood approximation to a consistant glo',al cl,, k tr witlw,
the granularit% of the local timestamps recordo-d in events The lg,,icalt w ,- -
a topological sort based on the dependencies dfined in theamovsx rcrc d If .
The logical time of an event is the laver of a topological sort of thflo grapil III
appears. No reference is made to he time stanps in events, hcn,.t a, of th, e -
have the same height.

Syne Display: Toggle between displaying the dependencies defined in movsxncrr ald
those defined in-.moviolarc. See sections 2.2.2 and 2.2..'. This option also afl-c!I
the dependencies listed in Event Data windows.

Process Order: Selecting this item will open a window that displays the current proc-,-,-
order. The process at the top of the list is the leftmost process in the display,. and t h,
pro-ess at the bottom of the list is the rightmost. There are ,!tr- ways tc, jodify
the ordering. Clicking on ->" or -<- in this window will order the processes i
descending (respectively. ascending) process identifier numbers. Clicking oil 11"
will order the processes by a heuristic that attempts to reduce the number of ed,.:,
crossings in the dispi,. "The houristir ordering places the process with th mllos
edges in the center. The processes with the most edges connected to tlh already
placed process(es) are placed on either side. This step is iterated until all of ti,

rocesses have been placed. Manual reordering is the third method. Pressing aliI

olding the mouse on one of a process identifier in the window, and then releasing
the mouse on top of another process identifier will move thc first procss past t,,.
second in the direction moved. Moving a process upwards places it before the second
process: moving it downward places it after the second.

Lines Menu: The first three items of this menu control the display of cross edges between
events on the display and those off the screen. If none of the first three options are chosen.
then only the edges between displayed events appear.

In Lines: For any event currently in the graph pane display the edges coming onto th,.
screen from events that directly affect this event.

Out Lines: For any event currently in the graph pane, display the edges leaving the
screen to events that this event directly affects.

All Lines: Display all edges of the graph that intersect the screen, whether or n( t they
are incident to events or the screen. Since this option slows the display time, andl
clutters the graph pane, it is normally not used interactively with Mot'ol- . Its
main use is to insure consistency when a hard copy is consfructed from multipl-
screen dumps. Choosing this itermi deselects both of the previous two items.

OnlyDirect: Display only those cross edges for which the second event waits for the
"first.



Filter' Ni : Whiii aniil c: t ~r d'ize As 01i:>M ;W.> vi, r it I- n
tr b'Ii a nunidr of fih r->.Ani eselit or ediz is, displaX -'I rlv if a1 ti'O i

I'An '-vetit or t highlighte-d if hid~i;ltiri; i, r. ri.st-! ii at 1'ast ( t'' \\T,
iibv-t of process, oh' t, aid operati iqtp filters to us. awd w~ih t iii ne'A. ~ v

and, or vd ges are detrmiined by a-t iv.At;ng the firtslt inunldtr this monii

Choose Filters: This option op-ns a window for choosing which filter r.. used 4r I
whet her th,. are used fOr events and or cross line, Ilie possileP filters. ar -W,
cC5si "01 N- and A'I) JD' Thle filters are defied v partit oning th 14
processes or oibi.'cts into t iree categories not displa ed. ds;iyd. andI iliiil 1.

Cho~ose Process: This option opens a window% for d-fining the, proces Il irii.
window, clicking a n the rmw of a orocess IDI will ~jethat p I~e' h, stat ii' co rn
spondirig to c~di. mn you clicked on If yon click dii *Disol' All -Dispa N liw
or "Higtilight ki"IT!i the iiindow. all processe Will Vr th, mrrespnldin '.

Choosing tfins It em whlen th wit A dow is alread Voj -1- will1 cose tilh. MId. i% 'I
process order is recormputed and the graph is reh is1 'ao'-d vi.n the wi mdn is J-i .

or whet '.0u cdick on o disjlay- in the w.indow
ClRoip Object: 'TOi opt' ' o pens ai in d w for defi ip t I. o0- (,ie' fil, r- 1!'.

window. C1ickiL onl th1 r' Of! W h'-'11 IllA give tLl~. OhVl1 Iti " t

splotin to c016mij -.)0 (tick.,, onl if 'on click on "Dis pla% All, fl1 !. N n,
or l liziblih llii th, in'x all J~ tie' obJects w ill get Il' corrsp ' ii .

('o'aving th- r-u it, rn '.i en tit- xind-xw is alr-adx openi will , -s tit, Xii i-v
T Ii, tr a T, i re-disl;alc d i I. the w'A ." Aii clMd c when you click ion Iviqa
iith, %%! 1ii xi%

C hoose OpID 'F il opt ion It ns a wiind,)"- f,.r d, finin- L oI erat on.Y ideiit if''7 -~i,

Ve wiindow'. rcung on W1 
rI~= of a th, id' itr firofaii opratil INIr ix;t11 c c!1

o prat ion t x ty t le tat us correspondiiig to column von ci ik-d Oil xIi ol rc .,I

Dilsplay All .- Di lax Non , or fiihtight Ap-I in tie wIndow All o " rat in tx e
w-ill get t Ii corresporidi r. statu C~ Choing the item wheii itle winx is alr0-ni 1
op-nrViH cbs t inmn~ "1hle ginph ts rlbj i -is' a hf ti li winiidow Is clsdor
when xou click or., *r.dis'iav"- Ii i win':ix

2.1 .4 Nliscuillanieotis Conixilands Menii

Nis i~ttl ultis Pane-' The M elti.nw~i nn proW'Ps tllhe ii cans tu obtainl hell, as NN,

to i-rirnmiscellaneous olerat ins such as readiiig an alternate .moviolarc defanlts. fil'
rnnhiii ua niew syni 'nnivation lusval , .and redrawing TiO screen . Information abil t t,

I fan s files are explained in the DefulS FiiK s-cthin of Olie -man page'

Man Page: This item opens a text window with tf;e mranual page. If chosen whjile iii.
help window is- open. tit window is clo.sed.

Bitiditigs: Thi- iteni opens a wi ndowx showing t i': cur-rent binding, of mouse buttrn 'ke

coiiibinati ic tc comminids.
ReDraw: This item will refresh everything in, the main. window.
New File: This item is for getting a new histry- file attached to this window. A request

for the history directory name will appear in the message wvindow. Type the name
followed by return to enter it.

Diifatilts: This item reads a new moviolarc defaults file. The file name is requested the,
same way &s the New File opition.

Raise Data: This item will raise all of the data windows.
New Window: This itemn will open another copy of Mfor'ola
Synuc Clocks: This iterri wilt synchronize the clucks using the dependencies defined in

the- nvvsy ricrr file

The Close Funct ion: This exits Afor bi . Ak biitton/ikev combination is also bound to a
"CLOSE-' command that is defiried for all AMMzt windows. Before any winw is ac-
tuall. r losed you must confirm that yon really intended to by performing a second burtton
chivk in the same windc.,



Keyboard If he nmus, pointer is in the main windc.w of the 11r? 1,. pakag,., an l k-r.
will be s,(t to) th rn ssagf, window. Pressing return will send the string to b prc.....
This is used for entering file names to chose a new defaults file, a new displa.v cr a n(-%N
fikt. If you type "'quit" and press return 3o1ola will quit.

In All Text Windows: Ifa text window has "<<<MORE >>>" at the bottom. then a lutilo,
clic' (except ffr any button, /'k, y combination defined to do something else) in t li, %&ind,,%%
will get the next page of text.

Clock Data: Under the "Dump Data" menu is a item labeled "Clock Data-. This itenm o,,
a window that displays the relations between the local clocks of any pair of pro,s,.,- T,,
left button goes forward throiugh the list of pairs. the right button goes backward TV,
middle button zooms in and out by clicking. "lhe shift/control/or Iita ke- aloi "!i,
the left button toggles the process-I to prccess--2 dependency points (the squares). One of
the keys with the lift butt on toggles the process-2 to process-I dependiny points. Ont- of
the keys with the niddl, button toggles thte displaying of lines. The lines relrese,,t th. tl,,
s vnchrcnization wh, c, the slupe is the scale, and the y intercept is the offset of proc et--> !i
relation to process-1.

2.2 Customizing .1lfo'ilola

Whei. .Iotzola is started, it configure.s itself according to the contents of three initialization files All
initialization fils have a common syntax consisting of command lines, each of which is a sequentr.

of keywords and valu's. All words must be separated by white-space, defined to be any sequence cf

the following characters [space]. ='':'.'&'.'j.'"" and In each section the separators are chosn

by convention for readabilit . Whenever the character #'is found in a file. the rest of th, line i-

treated as a comment. Eal. :mmand line is terminated by the end of the line. All informatioi i:i

initialization files is case insensitive.

Each of the three initialization files has a distinct function. The file ".movbindrc" binds com-

mands to keys and buttons and defines the initial window configuration. The initialization fil,

.movsynicrc.<package-name > defines the inherent temporal dependencies among events as deter-

mined by the instumentation library that records the history. These are generally a superset cf tihi

dependencies a user wants to display. This file is usually created by the authors of the synchroniza-

tion library and is not modified by the user. The file .moviolarc.<package-name > defines the initia

status of the display and the set of user-defined dependencies to display.

An instrumentation package designator must be part of the names of the ".moviolarc' and

"movsvncrc" files to designate the instrumentation that recorded the history. For example. ".moviolarc chr.

indicates that our standard Chrysalis instrumentation was used.

2.2.1 .movbindrc

This file defines bindings between mouse events (button/key combinations) to Moviola commands

Mouse events that are not defined here may inherit commands from the X window manager The

9



#PARAMETER = INITIAL VALUE

X = 10
Y = 200
WIDTH = 512
HEIGHT : 512

#FUNCTION = KEYS BUTTON

CLOSE SHIFT RIGHT
DATA = SHIFT MIDDLE
SCROLL = SHIFT LEFT
JUMP = NONE LEFT
ZOOMOUT NONE RIGHT
ZOOMIN = NONE : MIDDLE
UNDO CONTROL MIDDLE

Figure 4: The default .movbindrc file.

fib al,., spe.cifies the initial placement of the main window. The current directnrv, the user's homl':.

dirtect.Dry. and then a system-defined standard directory are searched in that order. It is read only

wI(,.ii 1oizola is initialized. Figure 4 illustrates the definition of the default bindings.

Binding Definitions The format used to bird a command is function keys : button. (Note
that the separators used here are chosen by convention.) This is just like the binding
commands in a uwmrc file (used by the uwm window manager) except that the context is
always "window" (as opposed to "icon"). tlolding down the specified keys on the keyboard
while clicking or holding the mouse button will invoke the command.

KEYS: The choices are StIlFT, META. CONTROL, ALL, and NONE or any cohl,i-
nation of the first three (i.e. "SHIFT & META", etc.).

BUTTON: The choices are RIGIIT, MIDDLE, and LEFT.

The Moriola commands that can be bound to mouse tvents are:

ZOOMIN: This is the "zoom in" command defined on the Z ;aph on.

ZOOMOUT: This is the "zoom out" command defined on the graph pane.

CLOSE: This is the "close" command defined on all Moviola windows.

DATA: Ihis is the command that will bring up the pop-up menus in the graph pane.

J. '.': This is the "jump" command defined on the graph pane and data windows.

LL: This is the "scroll" command defined on the graph pane.
- ..- O: This is the "undo" command defined on the graph pane.

Initia1 Con. ration This section defines the initial placement and size of the window. Each
co.rmand line takes the form

parameter = initial value.

X & Y: These are to define the initial x and y coordinates (in pixels) relative to the
root window.

WIDTH & HEIGHT: These are to define the initial width and height (in pixel.-) of
the tool's window.

10



2.2.2 .novsyncrc

This file specifies when a pair of events on a shared object define an inherent temnporal depeJi.-y

This is determined by the semantics of the instrumented synchronization primitives usted to record

histories. For that reason, a .movsyncrc file is usually created by the author of the correpondi,.g

synchronization packages. Moriola only assumes that the timestamps each process uses in recording

its own history are generated by a local clock. The inherent temporal dependencies are used as, th-

basis for deriving a single consistent gobal time base. We use the method described in [Duda 0 al

1987] to derive our best approximation to a global physical clock. The .movsyncrc file is read on,

when Moriola starts up. The search path is the data directory., the current dir.ctory. th,_ user's

home directory. and finally the standard directory,.

Class Definitions An instumentation package assigns an integer operation typ,. cod" to,
type of event. This classification is usually finer than needed for derivMn a,
global clock. Class definitions are therefore used to aggregate operation types into car
equivalence classes. The command opiyp( = class assigns the operation type to the corr,-
sponding class. Optyp( is eithcr an integer operation code defined in the iti-trum.ntati,,n
package or a keyword denoting one of the following following system-defined ev-n ty,_s
MASTERPROCESS. PROCESSHEAD. USERDEFINEDTAG. SYSTEMDEFIN ElITA;.
PROCESS-CREATE. EVENTERROR. or DIVISION. Note that the class number cannol
be larger than the maximum opt yp number plus 7 (for the 7 system types). A typical set
of operation types is defined in the sample .moviolarc file.

Dependency Definitions This section defines predicates that specify whether an event is con-
sidered dependent on another event. Dependency is determined by applying a test to pair- cf
events in the classes defined in the previous section. The format of a dependency definition
is cross: IsiField : rcl : 2ndField. Cross is of the form class->class. An event of th 2nd
class depends on an event of the 1st class if both events are operations on the samne otjo'ct.
and the value of the IstField of the first event is in relation rel to the value of the 2ndFild
of the second event. The possible Field's are POID. OPID. VRSN. ENTRY. EXIT. LIFE.
\VTIME. and ETIME. These fields are recorded by all history recorders. Rd must be on,-
of <. >, N<, or N>. N< and N> mean that the IstField must be N less than or greater
than the 2ndField respectively. The string "==" has been specially defined as a REL since.
the character '=" is considered white-space. For example, "2->3 VRSN I<VRSN" means
",-vents of class 3 depend on events of class 2 when the version number of the first event is
one less than the version number of the second event." (Note that "->" is NOT white-space.
and there is no white-space between the two classes.) If two event classes always depend
on each other, then NONE can be used instead of the FIELD's and REL. The only tests
currently used are comparisons of object version numbers.

2.2.3 .moviolarc

This file has four sections. The first specifies the initial state of the display. The second defines filter,

to be used on events and cross lines, the initial process and object filters, and the initial ordering of

the processes. The third section defines a set of operation classes used in the display and it specifies

how events are to be labelled. The fourth part defines the set of dependencies to be displaycld. .X

11



#INDEX = TYPE # LABEL

0 = 2 # PollWriteStart
1 = 3 # PollReadStart
2 = 4 # PollNUll
3 2 * MemoryDelete
4 = 8 # EventReset
5 B * EventPost
6 8 # EventData.
7 = 8 # EventDelete
8 = 8 # EventWait
9 = 8 # EventMWait
10 5 # DualQEnq
11 5 # DualQTryEnq
12 = * DualQwait
13 = # DualQPoll
14 5 # DualQDelete
15 = 3 # MeinoryReadStart
J6 7 # MemoryReadEnd
17 2 # MemoryWriteStart
18s 6 # Memory Writ eEnd
MASTER-PROCESS I
PROCESS..HEAD 1
PROCESS-CREATE = 0

#CROSS 1st FIELD TEST 2nd FIELD

#PC->E
0->1 NONE
#WE->RS
6->3 VRSN ==VRSN

#RE->WS
7->2 VRSN VRSN
#WE->WS
6->2 VRSN ==VRSN

#WE->P
6->4 VRSN VRSN
#DQ->DQ
5->5 VRSN 1< VRSN
#EV->EV
8->8 VRSN 1< VRSN

Figure 5: The default file: mrovsvn crc.chyrs. This is the default file corresponding to the standard

set of synch ionization primitives used with programs running directly on the Chrysalis operating

SNvSteflv

12



.moviolarc file is read every time a history is loadtd. 3orzola search(:s first In ti- dir,-ctory fr,-,m

which the history is read. then the current working directory, and finally tho usr's hn dir,.c:,r

This search path is overridden if the -d option is used on the command line. A new ni cyilar fill,-

can also be read explicitly using the "Defaults" command under the "Miscellaneous" menu. If a

dependency creates an edge that appears to go backwards in time an error message is printed and

the edge is discarded.

Initial Display This section specifies the initial state of the display. The format of conmands

is varabh = initall'lue. Refer to the sample default file for reference.

XSTART & YSTART: These are the coordinates of the point that is initial]. dis-
played in the upper left hand corner of the graph ane. If XSTART = A'. then
the'Nth process of the display will be placed in the ]eft side of the graph pan- If
YSTART = T and the physical time base is chosen, then time T (in ticks) .iI 1,,
placed at the top of the window. If the logical time base is chosen, then if Y"5i AlI
= T. the 7fh layer of the graph will be placed at the top.

XSCALE & YSCALE: These are the initial scale factors used for the gralh in tht x
and y directions. ThE x dimension is measured in processes, and th: dimen-i i
measured in ticks or levels (for the logical display).

DUMPDATA: This initializes the menu specifying what raw data dirlaw, whr an
event is opened. The initial value is specified by the keywords: EVLNTV. Pli1O(!lSS.
OUT, and IN.

LABEL: This initializes the menu that specifies the type of label used for ewent- in
the graph pane. The initial value is specified by'the keywords: OPERAIION.
PROCESS. OBJECT. and EVENT.

LOGICAL: This initializes the menu item controlling whether the logical or phvsica!
time base is used. Possible values are ON and OFF.

SYNC: This initializes the menu item that specifies whether to display the dependncies
from .movsyncrc rather than those defined in .moviolarc. Possible values ar, ON
and OFF.

LINE: This initializes the menu that specifies which lines are being displayed. Possibl-
values are IN and/or OUT, or ALL.

ONLYDIRECT: The option can be initialized as ON or OFF.

Filters This group of commands can enable and initialize the commands available under the

"Filters" menu. A line of the form

entity : FILTER : object,

where entity is one of PROCESS, OBJECT, or OPERATION and object is one or more of
EVENT or LINE will enable application of the filter for the entities to the specified class of
graphical objects. (Note that filtering by operation type is applicable only to events.)

The filters are initialized by a sequence of lines of the form

entity: status : { identifier mid ALL ),

where entity is one of PROCESS, OBJECT, or OPERATION, status is one of HIGHLIGHT.

DISPLAY, NODISPLAY, or REMOVE, and identifier is the numerical identifier of the entity
affected: a process identifier, an event type number, or an operation type number. The
keywords NODISPLAY and REMOVE are synonymous. Since the lines are processed in

order the easy way to suppress the display of a single process is to first request that all

processes be displayed and then REMOVE the appropriate process.

The initial ordering of processes is defined by a line of the form

13



#VARIABLE = INITIAL CONSTANT[s)
XSTART 0
YSTART = 0
XSCALE = 50
YSCALE 20
DUMPDATA = EVENT & OUT & PROCESS
LABEL = OPERATION
LOGICAL = OFF
SYNC = OFF
LINE = IN & OUT
ONLYDIRECT = OFF

#PROC/OBJ : DIS/NODIS/REM/HL : ALL/OBJECTID

# /LISP: FILTER EVENT &I LINE
# ORDER <,>,HEURISTIC
# -------------------------
PROCESS DISPLAY ALL
OBJECT DISPLAY ALL
OPERATION DISPLAY ALL
PROCESS FILTER EVENT & LINE
OBJECT FILTER EVENT
OPERATION FILTER EVENT
PROCESS ORDER <
U

#INDEX LABEL I ABBR. I TYPE

# --- -I----- I ---
0 PolWriteS I PWS I I

1 PolReadS I PRS 1 2

2 PolNull I PN 5

3 MemoryDel MD
4 EvntReset ER 8
5 EvntPost EP 8

6 EvntData EDt 8
7 EvntDel ED 8

8 EvntWait I EW 1 8
9 EvntMWait I EM 1 8
10 DualqEnq I DE 1 7
11 DualqTry I DT 1 7
12 DualqWait I DW 7

13 DualqPoll I DP 1 7
14 DualqDel I DD 1 7

15 ReadStart I RS 2

16 ReadEnd I RE
17 WritStart I WS 1
i8 WriteEnd WE 6
MASTER-PROCESS = Master M 0
PROCESS-HEAD Head H 0
USERDEFINED-TAG UserDfTag I UT
SYSTEMDEFINEDTAG SysDfTag I ST

PROCESS-CREATE ProCreate I PC 3
EVENT-ERROR ERROR I E

DIVISION DIVISION I DV 4
U

*CROSS Ist FIELD TEST 2nd FIELD

1->2 VRSN 1< VRSN #W->R

$2->1 VRSN VRSN #R->W

x1->1 VRSN 1< VRSN #W->W

3->O NONE #PC->H
#4->4 VRSN 1< VRSN #DV->DV

1->5 VRSN 1< VRSN #W->P

7->7 VRSN 1< VRSN #DQ->DQ

8->8 VRSN 1< VRSN #EV->EV

Figure 6: A sample .moviolarc.chrys file: This is the default file corresponding to the standard set of

synchronization primitives used with programs running directly on the Chrysalis operating system.

14



PROCESS : ORDER: H>' UEURISTIC }.

Labels This section defines equivalence classes on operation types and assigns display ail-k t,-
them. Each line is of the form

optype : label I abbr I class

The label and abbr are the name and abbreviation to display on an event if labelling by
operation identifier is requested. Optypc and class are used the same way they were usd il
.movsyncrc.

Dependency Abstraction This section defines the subset of dependencies actually displayd
in the graph. It uses the classes defined in this file, and the format is the sanw as in
.movsyncrc.

3 Using Moviola as part of the PPUTTs Toolkit

The graphical display capabilities of Moriola make it a useful tool for analyzing the corrtctn,.,-

and performance of a concurrent program through the observation in detail of synchroniza inn aid

communication behavior. Despite this utility, we want and need additional functionality beyond th,
graphical manipulation facilites we have described thus far. Source language debuggers. statis'ical

analysis tools (including profilers). and critical path analysis are potential extensions that we mi.zhi

want to make directly to Morzola . The set of extensions. however, is not limited to theset few.

Each source language, each target machine, and many application programs will need individually

customized extensions. Furthermore, the sheer size of some execution graphs and the drudgery of

traversing them by hand will cause some users to want to make ad hoc extensions in response to

phenomena seen in a particular execution graph.

To satisfv these needs it is necessary that Morviola be made both dynamically extensible and

programmable. The PUTTs Toolkit provides these properties by running Moviola and other parallel

program analysis tools under a Lisp system. Running Moviola in this mode provides extended

functionality both by allowing one to use a library of existing analysis tools, to write one's own

extensions, and to interactively program ad hoc analyses.

3.1 Starting Moviola under the Toolkit

The first step is to start the Toolkit. See the online manual page for pputis to get started. Pputts

is a modified version of Kyoto Common Lisp. When it starts up you are interacting with the Lisp

interpreter. To obtain the data needed for finding the other parts of the Toolkit, pputts reads a

file accessed by the path "../.tools". To list the available PPUTT's tools execute the Lisp form

(pputts-list-tools). The function (pputts-load ioolname) will load and initialize one of the listed
tools. For example, (pputts-load 'inoviola) loads Moviola . Once Moviola has been loaded the

simplest method of starting it is to execute the form (moviola-start &optional hzst-dir :display

15



I PS

Figure 7: Selecting a Source Node

nq "rc ,chrrn, ). Thi, is equivalent to starting AMoviola from the command line and ha,, the same

arguments. (Note that ":display" and ":rc" are keywords for the optional arguments that follow.)

A Moriola window is opened and you can interact with it exactly as you did in standalone mode.

Morzola 's functionality is extended by loading packages of analysis tools. For example. to

load the standard waiting-statistics too!. execute (pputts-load 'waiting). The following functions

tabulate the waiting time of an execution by process or by object.

(all-process-wait-total history) ->list: This function returns a table in list form of total wait-
ing time tabulated by operation for each process.

(all-object-wait-total history) ->list: This function returns a table in list form of total waiting
time tabulated by operation for each object.

3.2 Critical Path Analysis

16



-

Figure 8: Highlighted Critical Path

17



Another useful tool performs critical path analysis. To load this tool execute (pputts-load 'critical).

The package defines the following functions an,! variables

critical-path: To compute the critical path from a source event to a sink event execute (critical-
path source sink), where source and sink are events. The list of events returned is the
critical path. Executing (main-critical-path history) will compute and return the critical
path from the first to the last event of the history.

critical-env: Executing (critical-env) installs an interactive facility for computing and dis-
playing critical paths. The user interface is through several items that critical-env adds to
the event and history pop-up menus (The utility for modifying menus utility is explain.d
in section 4.2.3.) Two new event menu selections labeled "Source" and "Sink" are used to
define the source and sink events. A ieN history menu selection labeled "Use Sync- toggles
between using all dependencies in computing the critical path and using only those that are
displayed. After selectiog source and sink events (figure 7), the user chooses a new history
niciiu belection iabeleu "Critical Path" t- compute the critical path. The path is highliglhte,.
the rest of the synchronization history is not displayed, and the path is associated with the
history.

The history menu selectioi labeled "Crtci Path 2" will calculate the critical path. and th,1n
calculate a second path which is found by setting all of the edges in the critical path to zero
and then recalculating the longest path (with respect to execution time). Only the evwnts
in the two paths will be displayed. and the events in the second path that are different from
the first are highlighted. Botih paths are associated with the history.

Th reiations between the Lisp objects computed in each of these actions and the history
are created and maintained by an "association utility". (See section 4.2.2.) The values of
the global variables *souirce-id* and *sink-'d* are 'he indices used by the association utility
for storing dnd retrieving source and sink evens. Similarly, it uses the indices *sync-id* to
store the flag that specifies which se t of dependencies to use, *path-id* for the critical path.
and *path2- d* for the second path.

4 Programming Moviola with Lisp

T,, Moiula tool supplies the programmer with a set of functions that access and manipulate

M,, ioea's internal data structureE. There is also a set of utilities that allow Lisp functions and vari-

ables- to be accessed through the Moviola user interface, thus extending it. New tools are integrated

with the rest of the system by using these facilities.

4.1 History functions

'The following functions access and manipulate the internal Moviola data structures that comprise

a synchronization history.

4.1.1 Sync Functions

These functions control the choice of dependency sets used for the display. If event-sync is turned

on. the dependencies defined by the synchronization package in .movsyncrc.packagf are used rather

18



than the dcpendencies defined by the user in the file .moviolarc.packag(.

func: (event-sync)-> t/nil /* The current sync status */
func: (event-sync-on) /* Turn sync status on
func: (event-sync-off) /* Turn sync status off */

4.1.2 The Cross Line Data Structure

An xline structure represents a cross line between two events. For each event the first xline in tlc

xine-out linked list is a link to the next event (if it exists) in the same process. Similarly tie first

xline iti Lhe xiine-in linked list is a link to the previous event (if it exists) in the same process. The

rest of the cross lines are the other dependencies defined in the defaults files.

macro: (xline-in xline) -> xline /* Next in cross line */
macro: (xline-out xline) -> xline /* Next out cross line */
macro: (xline-from xline) -> event /* The event pointing */
macro: (xline-to xline) -> event /* The event pointed to */
macro: (xline-status window event) -> *nodisplay* I *display* I *highlight*
macro: (xline-field xline) -> int

macro: (xline-field-set xline int)

The field field of the structure is reserved for the use of the Lisp programmer.

4.1.3 The Event Data Structure

An event structure represents an event in the synchronization history.

macro: (event-next event) -> event /* Next event in process */
macro: (event-id event) -> int /* Event id */
macro: (event-history event) -> history 1* The history of this event */

macro: (event-rel-x event) -> int /* The relative x position */

macro: (event-rel-y event) -> int /* The relative y position ./
macro: (event-log-y event) -> int /* The logical y position */

macro: (event-height window event) -> int /* The event height */

macro: (event-head event) -> event /* The head event of this process */
macro: (event-head? event) -> t/nil /* Is the event the head event? */

macro: (event-last event) -> event /* The last event in this process */
macro: (event-out event) -> xline /* The first out cross line */

macro: (event-in event) -> xline /* The first in cross line */

macro: (event-status window event) -> *nodisplay*/*display*/*highlight*
macro: (event-incomplete event) -> t/nil /* Is the event incomplete? */
macro: (event-prev event) -> event /* The previous event in this process */

macro: (event-objectID event) -> int /* The id of the object acted upon */

macro: (void-objectID? int) -> t/nil /* Is the object id void? */
/* (incomplete or division event ) */

macro: (event-vren event) -> int /* Version of the object acted upon */
macro: (event-opid event) -> string /* The operation label of the event */

19



macro: (event-stime event) -> int /* The start time of the event */

macro: (event-access event) -> int /* The access time of the event */

macro: (event-exit event) -> int /* The exit time of the event */

macro: (event-wait-time event) -> int /* Time the event waited to access */

macro: (event-work-time event) -> int /* Time the event worked on object */

The event fields fieldl and field2 are reserved fo. the use of the Lisp programmer.

macro: (event-fieldi event) -> int

macro: (event-fieldl-set event value) -> int

macro: (event-field2 event) -> int

macro: (event-field2-set event value) -> int

The event numin field is set to be the number of "interesting" incoming edges by the function

hist-reset-incounts. At other times this field can be used as desired by the Lisp programmer.

macro: (event-numin event) -> int

macro (event-numin-set event value) -> int

macro. (event-numin-dec event) -> int /* Decrement the numin field */

func (center-win-event window event) /* Center an event in a graph pane. */

4.1.4 The History Data Structure

'rheso forms return global information about a history.

macro. thist-numbet-procs hist) -> int /* The number of processes */

macro: (hist-name hLst) -> string /* The name of the program */

macro: (hist-process hist int) -> event /* The head of the int'th process */

macro: (hist-mainproc hist) -> int /* The head event of the main process */

macro- (hist-firstevent hist) -> event /* The first event in the graph */

macro: (hist-lastevent hist) -> event /* The last event in the graph */

Hist-reset-incounts recomputes the event-numin fields of all events in the history. The only

edges regarded as "interesting" in this computation are those that can be traversed by paths rooted

at the specified event event. This function is used for computing a topological sort of the graph.

The fieldl and field2 of the event structures are modified by this function.

macro: (hist-reset-incounts hist event)

4.2 User Interface

The following functions and variables are used to affect the cu. ant state of the display and to extend

the Moviola user interface.

To make a new tool known to the Toolkit, execute (pputts-save keynamc filename &rest dcpendencics).

where keyname is the name by which the tool should be known, filename names the file in which to

find it, and dependencies lists th- tools upon which this new tool depends. Attempting to load the

new tool will ensure that all the dependencies are also loaded.

20



4.2.1 *moviola-window* andI *mvol-ii r*

Tiies( two global 1.1;p variafldt- ci nt to thle mo,_st recent ly reft-rernced Morziola wviilow, and ~j~ v

respectively. If a wind :'w is rtfcr,:,1C(e wi'thorut being associatted with a histcory, then_11nIa

liistorY* will be null. Similarly *zzoviola-wixldow* is null if there is a referenic- to a ]I,,!

associated with a window.

4.2.2 Association util-itY

The association utility maintain, association lists attached to all windows and historl- 'Ic. &4,11

a new field for either type of object, use the functions (new-win-assoc ttnrtjtinchrn or w

hist-assoc init-function). These functions return the integer index of the newl% creat. f'i,

Init Jun ction is uscd tn initialize t he new field. It should take a window (respet!(t% iv h

aits argument and return an initial value. It is called for every existing asscriw i; i xc,

the, new field is created and it is called whenever a new association list is creatrel Tij-f2t

(win-assoc uzndou id-nurn1cr) and (hlist-assoc history id-numbfr) return the- valin. a i

The functions (cliangc-v~ini-assoc wrndou zd-iumber neiuxolu6) and (change-hist-assoc vl

id-numnber neu-vatuc) set the value of a field. T he functions (rernove-win-assoc Id-nu-41.F! a..

(remove-hlist-assoc id-numbcr) remove fields from the lists.

4.2.3 Menul Item Utility

The functions (add-event-itenifuinction init-functor label) and (add-Iiistory-item function 1711lJfci;

install new items in the pop-up menus. The argument fun ction specifies a function to call wli'1 tI!-

menu item is selected. It takes three arguments: the current window, the selected object (event -,r

history), and the current state of the menu itemn (nil for off and t for on). Function returnsii

new state of the menu item. The argument Mil-function specifies a function to initialize tile iten11

when the menu actixated. Its arguments are the current window and the selected object (event or

history). The argument label specifies a label for the item. It may be any object that the (stringI

function will take. The functions (remove-event- item Iabd) and (remove-hiistory-itemi la b I)

remove menu items.

4.2.4 Lisp Filter Utility

The display status of e-ents and cross lines can be affected by the functions (set-event-status u-in-

dowl event status) and (set-xline-status ,i'ndou, line status), whlere status can be one of *displa *.
*nodispla.*, or *highlight*. If no other filtering has been requested from the user interface this will

be the mode in which the object will be displayed. If other filters have been requested the mode is

computed by combining the requests as described in section 2.1.3.

21



4.2.5 Process Ordering Utility

I It, f!!%.t in (set-proc-order ui Tideu prrcer'd~yrj spt'cifit- t h'- sot ('f prrs to 1ed ; , w 'J h

l ist pruc e rd r sp.Ki ties t'oi t he s, i ati 10,F, crder in wlhidh it Is to I, dispi aYed. A proc s Canl a p- -.r

at ImIot oliti '.

4.2.6 Othier Variktl',-

Tht. following lobal variab-les are also used b\y the' utilitie's. Changing th-Mn can bt dangerous

*wifl-iist-tall* 'ils is an a itinlist binding hi'Stcries towidw

*.%initaile* and *lhisttablc,* TtiPse ar, llists of the association hiL~s rnanagred hy vte aii-

tion utility The ne-xt available ldnuinber is kept in * win-assoc-id* and 'I~tso~1 h.
nlit ial iZat ionl fUrirt ions are kept in *Iliit. win -assoc* anid *lii~t-h i;t-assoc *

~c~xit-finetoii tale*and * hist -funct ion- table* These are t aHbls that hldi tw befunrTi r,
b!ur.lll to_ dvnan~ll o. lly cre-dted menu items in the event anid hist or\nwu.

*I)1ocordcr* I lll Is dthe list of pr ~cess nu ndicrs that specifies t1w. set of d ispla>v,- pr. -ess'

4.3 History and 'Window Functions

1he's- fu tictIionn- are- tis-i to control tnti t i pb hist ci es and, wind'.'

macro: (hist-draw-display hist) /* Redraw the graph *

macro: (init-history filename &optional defaults) -> history /* Load a history*'

macro: (new-window &optional displayname) -> window /* Open a window s

macro: (moviola-bind window history) 1" Bind a history to a window *

macro: (free-hist history) /* Free a history *
macro: (free-win window) /* Free a window *

5 Instrum-ented Synchronization Packages

Mocrola is structured ito support the siruultaneous use of multiple instrumentation packages. Each

instrumnentation package requires that a backend be written for it and as many, backends a., are

needed can be compiled into Mcr':dal.

There are currenfly t~o instrumented synchronization packages in use. We will describe the

package we use for programs on BB3N Butterfly (TM) Parallel Processor that run directly with the

Chrysalis (TM) operating system. There is also a package for the Lynx [Scott, 19861 programming

language on top of that base.

In the Chry.salis backenid there are three types of shared object. The first type is a shared memorN

ohject whose structure is defined by the user. The package provides primitives for a single writer,

multiple readers locking protocol. The second type is a Chrysalis shared event object. A Chrysalis

22



event cal be thought of as a mailbox o%%ned by a sn cngl, process. Tb. event ca; , a I).

integer at one time. Any process can post to any event, but only the owner can r,.ad fr,-i o reI h°'

third type of objo-ct is a Chrysalis shared dualq. This is a siir,.d object that lii- a h-:i,. a:i,! t i!

pc.inter to a queu,,. A process can atomically write to either the head arid the tail of a claalq. but

a process can only read from the head of the queue. e ence the duaiq car double a. a stack. Ii,

following event types are generated by the package.

5.1 Process Header Events

MASTEIPROCESS: operation type = 0

objectID = a process ID

In ea,-h execution the first process to start is the master. The master process h-:, r ,r
the tinkt. b, prucess took fromi start to finish. the nuinber of ewr~r ir r 1. rI . a,',
pointer to tie data structurt reprsentinc tie synchronization h'1stry Ihi- . ,
actual iv read froni a data fil, , but is created b) Voiriola to mark tI iegihl, .

PROCESS-HEAD: operation type 1
objectlD = a process ID

All other processes are marked with process-head events.

5.2 Shared Memory Objects

The package provides a set of operations for a single-reader. multiple-Nriter.- locking ,

be used with shared memory objects. Some of the operations for obtaining locks cli, k r

user-defined predicate is satisfied before actually obtaining the lock and returning t, (-, c.

These primitives are implemented by evaluating the predicate in a polling loop The pr . -

an exclusive lock on the object while the piedicate is being evaluat,.d If the opera!ii n a.-

concurrent access. the lock is then weakened before the primitive returns. The, purpo. of.il,.

primitives is to provide direct support for events consistent with coMplex corIrinicatI n prinHt;%,-

For example. to write into a message buffer, a process must wait until it can get a writ,-lock a,,i

until the previous message has been removed. By including polling within the primitive operaT!.,,1

the interval from the first attempt to obtain the lock to success appears as a sincle event iII th,

history.

MEMORY.POLLVRITLSTART: operation type = 2:
objectIL = a shared memory object ID

A memory-poll-write-st art event returns with a write lock.

MEMORY..POLLREAD.START: operation type = 3:
objectil) = a shared memory object ID

A memory-poll-read-start event returns with a read lock.

23



METMORY..POLL-NULL: operation tylp, =4:
objectID =a shared memory oliect ID)

A meniory-poll-riull event ret urns whet iite pit-dicate is sa~ isfied but does riot oht an a!:,.
locks.

MEMORY...DELETE: operation type =5

objectID = a shared mnemory object IF)

A memory-delete event deletes thc shar, d ob.jec-t.

MEMORY-READ -START: operation type =17.
objectID = a shared memory ob1.ject ID

A memory-read-start event is a blocking upfrati~n that obtains a read lock for the share-d
object.

NIENIORY-READ..END: operation type=18
objectiD) = a shared memory object ID

A memory-read-end event releases the read lock on the specified objec(t.

M E'MO0RY-.WRIT E-START: operation typo 19;
ol-jectiD =a sliafed memnory object IL.)

A memory-write-st art event is a blocking ope2ration that obtains a -write lock on the object.

MIENORY-NNWRITE-END: operation type =20:
objectID =a shared memory, object ID

A memnory-write end event will release a wl te lock.

5.3 Events on Chrysalis Events

EVENT..RESET: operation type = 6-
objectID = a uihrvsalis shared event object IL)

.An event-r'eset event clears and empties a specified mailbox.

EVEINT..POST: operation type
objectlD = a Chrysalis shared event obje:ct ID

An event-post eventw places the letter in il.t Lpec';id mailbox if it is empty.

EVENT-DATA: operatior vpe = 6
objectID = a Chrysalis shared event object ID

An event-data event returns the letter from a specified mailbox. If there is no letter, the
reset value is returned.

EVENT-DELETrE: operation type = 9:
objectID =-a Chrysalis shared event object ID

An event-delete event deletes the mailbox.

EVENT-WAIT: operation type = 10:
objectIfl = a Chrysalis shared event object ID

An event-wait event blocks until a letter is received in one of its mailboxes. It tOwn returns
the ID of the mailbox in which it was received.

24



EVENT_MWAIT: operation type = 11:
objectID = a Chrysalis shared event object ID

An event-mwait event will block until a letter is received in one of several specifi-I rnaillox',,
It then returns the ID of the rm-ailbox in which it was received.

5.4 Events on DualQueues

DUALQENQ: operation type = 12:
objectiD = a Chrysalis shared dualq object ID

A dualq-enq event places a value on the dualq at the head or tail as specified. A bus error
occurs if the dualq was full.

DUALQTRYENQ: operation type = 13:
objectlD = a Chrysalis shared dualq object ID

A dualq-try-enq event does the same as a dualq-enq except it returns FALSE if th- dual,
was full.

DUALQ_%VAIT: operation type = 14:
objectlD = a Chrysalis shared dualq object ID

A dualq-wait event blocks until it can return a value from the head of the dualq.

DUALQPOLL: operation type = 15:
objectlD = a Chrysalis shared dualq object ID

A dualq-poll event returns a value from the head of the dualq if one exists.

DUALQ.DELETE: operation type = 16:
objectiD = a Chrysalis shared dualq object ID

A dualq-delete event deletes the dualq.

5.5 Other Events

USER-DEFINEDTAG: operation type -- 21:
objectID = no object ID

A user-defined-tag event can be inserted by the user at "interesting" points in the execution
of a process.

SYSTEM -DEFINEDTAG: operation type = 22:

objectlD = no object ID

A systemdefined.tag event is generated by the system at "interesting" points in the execu-
tion of a process.

EVENT-ERROR: operation type = 23:
objectlD = no object ID

An event-error event occurs when the process is killed during the execution of an event.

DIVISION: operation type = 24:
objectID = no object ID

A division event is a synthetic event inserted by Moviola in every process when no process
is doing anything interesting (not touching any shared object) for a reasonable amount of
time. These make the display more compact.

25



A Directories and Files

On the shared file systc-m in the Computer Science Department at the University of Rochester the'
following directories and fil.s are of inttrest:

/u/replay is the repository for PPUTTS-related material.

/u/replay/news contains documentation for recent updates of PPUTTS. This includes both the
text for appendices updating this gaide as well as notes on recent changes that have not vet
been put in final form.

/u/replay/lib contains the standard vrsions of the Motzola initialization files. It also contailis
the files pputts.isp and tools used in the initialization of the PPUTTs version of Lisp.
The directory containing PUTTs manual pages is also located here.

/u/replay/bin contains symbolic links to the executibles.

/u/replay/src/moviola contains all of the Moszola source code and executibles.

moviola is the standalone version of Motiola . There is a link from /u/replay/bil.

moviola.o is the Mor 'ola tool loaded by Lisp.

castl.c and include/castl h contain the source code for the Chrysalis backend.

c-int.c, lisp-nt .lsp, c.lsp,*.is, define the interface between Lisp and and tools written
in C, specincally Mozio1 a

/u/replav/src/toolkil cntains the locally modified version Kyoto Common Lisp that forms the

bsis for the 'loolkit

/u/replay/src/lisptools contains the to(k!¢ written in Lisp.

26



References

[Bernstein et al.. 19S7] P. A. Bernstein, V. Hadzilacos. and N. Goodman, ConcUrr(71y ('OntTc, and

Recovery in Database Systems, Addison Wesley, 1987.

[Duda et at., 1987] A. Duda. G. Harrus. Y. Haddad, and G. Bernard, "Estimating Glolbal Time iII

Distributed Systems," Proceedings of the 7th International Conference on Distributed Systcnis.

pages 299-306, September 197.

[Fowler et at., 1988] Robert J. Fowler, Thomas J. LeBlanc, and John M. Mellor-Crummey. 'Ai

Integrated Approach to Parallel Program Debugging and Performance Analysis on Large-Scal'i

Multi-Processors." Proceedings of the ACM SIGPLAN and SIGOPS Workshop on Parallel anld

Distributed Debugging, pages 163-173. May 1988.

rGettys and Scheifler. 198C Jim Gettys and Robert W. Scheifler. "The X Window Syscn7. .4C.1/

Transactions on Graphics. N'5(2):79-109, April 1986.

[Lamport. 19781 L. Lamport. "Time. Clocks. and the Ordering of Events in a Diztrihuit,.d Svst-ii.n

Communications of the ACM, V2.1(7):558-565, July 1978.

(LeBlanc and Mellor-Crummey. 1987j Thomas J. LeBlanc and John M. Mellor-Crumm-y. "Dei~ui-

ging Parallel Programs with Instant Replay," IEEE Transactions on Computers. C-3t'(4 ,:-471-4"2'.

April 1987.

[Scott, 1986] M.L. Scott. "LYNX Reference Manual." Technical Report BPR 7, Computer S.qj,,

Department. University of Rochester, Rochester, NY, August 1986, (revised).

[Yuasa and Hagiyaj Taiichi Yuasa and Masami Hagiya, Kyoto Common Lisp Report.

27


